

Warehouse Layout Optimization Using PRM and the Capacity
Scaling Algorithm
Final Project

Luis Brena
October 2, 2024

Network Models

2

Summary

Problem description
Optimize aisles position and orientation in a cross-docking facility

Solutions and proposed algorithm
Use of RPM, capacity scaling algorithm and stochastic sensitivity analysis

Conclusions and recommendations
Alternative algorithms and results

3

Problem description

Motivation

• Lack of a simple solution for temporal or crossdocking warehouses.
• Finding an simple good sub-optimal solution to the warehouse layout design
problem.

• Designing an algorithm that considers the most important cost variables in
layout design.

4

Visual description

5

Linear program

Minimize
p∑

i=1

q∑
j=1

cijxij

Subject to
∑q

j=1 xij = xsi ∀ i = 1, . . . , p

p∑
i=1

xij = xjr ∀j = 1, . . . , q

xsi ≥ Fi

xjr ≥ 0, xjr ≤ 1 ∀ j ≤ q
p∑
i

Fi ≤ xrt

xij ≥ 0 ∀ i ≤ p and j ≤ q

(1) (2) Arc balancing constraints (7) Demand constraint
6

Cost estimation and shortest path

The cost of every arc (i,j) is calculated as follows:

cij = wikdkj

Where wik is the cost ($
foot) of moving any item i from dock k. We consider items

departing from different docks as different items. We want to find dkj .

Minimize ∑
(u,v)∈A

xu,vdu,v

Subject to

n∑
v:(u,v)∈A

xuv −
∑

v:(v,u)∈A

xvu =


1, v = k

−1, u = j

0, otherwise 7

Solutions and proposed algorithm

Literature Review

Zouein, P. P., & Tommelein, I. D. (December, 1999). Dynamic Layout Planning Using
A Hybrid Incremental Solution Method. (JOURNAL OF CONSTRUCTION
ENGINEERING AND MANAGEMENT). ASCE.

Rakesh, V., & Adil, G. K. (2015). Layout Optimization of a Three Dimensional Order
Picking Warehouse. Shailesh J Mehta School of Management, Indian Institute of
Technology Bombay, Mumbai, India.

8

Proposed solution

1. Creating a new layout adjusting parameters
2. Build a network using PRM
3. Find the shortest path using euclidean distance and Dijkstra’s algorithm
4. Use capacity scaling algorithm to find the minimum cost, optimally placing
the items.

5. Repeat with a different configuration.

9

Creating a new layout

The proposed algorithm starts with the creation of a new layout. To do this, we
defined a set of parameters.

Space size defined by boundaries and the origin: B = (xb, yb)

Number of aisles: I = 3, set to 3 for the example

Most left extreme corner position: posi = (xp, yp)

Aisle longitude: L

Aisle orientation: θ

The docks position in the axis y: yk

10

Creating a new layout

11

Build a connected undirected graph

1. Randomly sample nodes in the 2D space
2. Check for collisions and connect nodes using a circle of maximum distance
3. Add the terminal nodes j and source nodes k to the graph
4. Find the shortest path from k to j for all k, j ∈ N ′

5. Save the shortest paths dkj

12

Algorithm description

Generate sample points.

X = ax + (bx − ax) · rand[0, 1)
Y = ay + (by − ay) · rand[0, 1)

Check for collisions:

xi ≥ x0 + L× tan(θ) ∀ 0 ≤ L ≤ L1

yi ≥ x0 −W × tan(π − θ) ∀ 0 ≤W ≤ 4 = aisle width

Add the dock and aisle space j

x[w] = x0 + l × cos(θ)− w × sin(θ) ∀ l =
L1

q/6
, w = 1, 3

y[w] = y0 + l × sin(θ) + w × cos(θ) ∀ l =
L1

q/6
, w = 1, 3

Find the shortest path from k to j using Dijkstra’s algorithm. 13

PRM

14

Find the optimal location for the items

This is a transportation problem but we will make it mode general

15

Capacity Scaling Algorithm to solve the Minimum-cost problem

G(x,∆) Subgraph of G(x) consisting of arcs whose residual capacity is at least ∆.

S(∆) = {i : e(i) ≥ ∆} Nodes that act as a Source

T (∆) = {i : e(i) ≤ ∆} Nodes that act as a Sink

e(i) = b(i) +
∑

j:(j,i)∈A

xji −
∑

j:(i,j)∈A

xij ∀ i ∈ N

O(m logU)(m+ n log n) Runs in polynomial-time

16

Capacity Scaling Algorithm to solve the Minimum-cost problem

1: x← 0, π ← 0 and ∆← 2logU

2: while ∆ ≥ 1 do
3: for every arc (i, j) in the residual network G(x) do
4: if r(i, j) ≥ ∆ and cπij < 0 then
5: send rij units of flow along arc (i, j),
6: update x and the imbalances e(·), S(∆) and T (∆)

7: while S(∆) 6= ∅ and T (∆) 6= ∅ do
8: select a node k ∈ S(∆) and a node l ∈ T (∆)

9: determine shortest path distances d(·) from node k

10: ∆-residual network G(x,∆) with respect to the reduced costs cij
11: update π ← π − d

12: augment ∆ units of flow along the path (the shortest path k − l)
13: update x, S(∆), T (∆), and G(x,∆)

14: ∆← ∆/2
17

Optimality conditions

Each iteration solves a shortest path problem with nonnegative arc lengths and
strictly decreases the excess of some node. The iterations continue as long as a
set of nodes has nonzero imbalance.

A feasible solution x∗ is an optimal solution of the minumum flow problem iff:

cπij ≥ 0 for every arc (i, j) in G(x∗)

We can show this by using the Negative Cycle Optimality Conditions: The residual
netowork G(x∗) contains no negative cost directed cycles, i.e. there is no shortest
path in a graph with a negative cycle; if there is, this does not hold
d(j) ≤ d(i) + cij .∑

(i,j)∈W cπij ≥ 0 for every directed cycleW in G(x∗).∑
(i,j)∈W cπij =

∑
(i,j)∈W cij ≥ 0 so G(x∗) does not contain a negative cycle.

18

Results and conclusions

Results

w = [0 . 5]*48
d = [3 . 0 6 2 , 3 . 2 08 , 3 . 3 7 3 , 3 . 4 2 7 , 3 . 4 8 1 , 3 . 5 4 , 3 . 9 6 5 , 3 . 9 8 1 ,

4 . 0 1 8 , 4 . 2 68 , 4 . 3 9 7 , 4 . 4 9 7 , 4 . 845 , 5 . 0 39 , 5 . 2 1 5 , 5 . 8 4 ,
5 . 898 , 6 . 3 1 , 6 . 584 , 6 . 7 3 5 , 6 . 9 0 1 , 6 . 9 5 5 , 7 . 7 5 , 7 . 8 1 8]* 2

F = [1 , 2 , 2 , 4 , 5 , 1]
Solut ion = { ’ x_3_p7 ’ : 1 . 0 , ’ x_4_p5 ’ : 1 . 0 , ’ x_4_p6 ’ : 1 . 0 ,
’ x_4_p7 ’ : 1 . 0 , ’ x_4_p8 ’ : 1 . 0 , ’ x_5_p2 ’ : 1 . 0 , ’ x_5_p3 ’ : 1 . 0 ,
’ x_5_p4 ’ : 1 . 0 , ’ x_5_p7 ’ : 1 . 0 , ’ x_5_p8 ’ : 1 . 0 , ’ x_6_p7 ’ : 1 . 0 }
Minimum cost = 3 7 . 80 1
[Repeat the complete algor i thm using a d i f f e r en t con f i gura t ion]

19

• The problem could be closer to reality but may become
more complex to solve

• The simplex algorithm is commonly used by researchers
because it is a one time procedure (in most cases)

• Stochastic simulation can be another effective approach
• New algorithms like Li Chen et al can run in almost linear
time

• Testing different configurations is necessary to identify
the most efficient layout design.

19

Questions?

	Problem description
	Solutions and proposed algorithm
	Results and conclusions

