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Abstract
In this paper, we apply reinforcement learning methods
to the popular board game NMBR 9. Specifically, we
implemented two Monte-Carlo Tree Search(MCTS)
variations with the hope of achieving human level
performance. The first implementation of MCTS ex-
ploits local node/action similarities to decrease the
state space of the tree. The second implementation
uses an actor critic model and a MCTS to substitute
for the lack of expert move data. In order to implement
and evaluate these methods, we developed a simula-
tion environment in PyGame. Some features of the
simulation environment include human playability as
well as computer simulated games.

1 Introduction

The real-world applications of Reinforcement Learning
(RL) extend to various fields, including energy manage-
ment and resource planning. These areas contain similar
challenges to those found in board games. One of the
most common issues found in both board games and real-
world application is the management of a massive state
and action spaces. More broadly, the challenge of balanc-
ing exploration and exploitation is also encountered in
both domains (Dulac-Arnold et al., 2019).

The goal of our paper is to present two Monte-Carlo
Tree Search based algorithms to effectively play the game
NMBR 9. NMBR 9 is a strategy board game in which
players place number tiles of varying shapes to create
a stacked board. Points in NMBR 9 are scored such
that placing numbers on higher levels multiplies their
point value. This scoring mechanism well-embodies the
challenge of trade-off between immediate rewards and
delayed rewards. Furthermore, while the (immediate)
points rely deterministically on the player’s actions, there
is immense complexity in the game by there mere size
of the possible states. The deck, which consists of two
copies each of ten cards (the numbers 0 through 9) can
be shuffled in 20!

10!10! = 184, 756, 720 unique ways. From
these unique sequences of numbers there are numerous
ways to arrange the tiles according to the game’s rules
such that enumerating them becomes impractical.

2 Related Work

The famous MCTS algorithms used in AlphaGo and Alp-
haZero (Silver et al., 2017) are the primary inspiration for

our project. AlphaGo uses deep learning architectures and
Monte Carlo Tree Search to achieve greater than human
abilities at playing GO. A policy network structured as
a convolutional neural network is trained on 30 million
expert moves. A value network is also trained as a con-
volutional neural network to conduct board evaluation(+1
or -1) for win or loss. Similarly, Alpha Zero uses a com-
bination of deep learning and Monte Carlo Tree search to
achieve super-human abilities at chess. The policy and
value networks are trained as a double head convolutional
neural network. One head outputs the probability of each
move and the value head indicates a evaluation number
indicating outcome(+1 to -1) for winning or losing. The
primary strategy in both AlphaGo and AlphaZero is the
use of convolutional neural networks to estimate the mas-
sive state space. Due to computational restriction and lack
of expert move data, we had to modify the method pre-
sented in AlphaGo and AlphaZero. Ultimately, we came
up with two MCTS variation which used node similarity
and an actor critic model to effectively play NMBR 9.

3 Problem Formulation

We formulate the game as a finite-horizon, stationary
MDP based on the rules of the game. The most notable
rules are that a tile must always touch another tile and tiles
on higher levels must be supported by two tiles. In order to
make the game more computationally friendly, we made
two main assumptions. Firstly, we assume that the game
is played "single player" with the goal of maximizing
points scored. Secondly, we assume the board size to be
24 by 24 with a maximum of 4 layers.

Figure 1: Tile shapes and placement rules for the NMBR 9
game.

State Space. The state space for this problem is all
possible board configurations across all time points in the
game. We represent a given state with the following tuple
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below. Where Bt and Tt are representations of the board
where each element is the value and the unique identifier,
respectively. −1 indicates invalid move. The element nt

is the number to be placed on turn t, and dt is a vector of
the number of each type of card remaining in the deck at
t.

st = (Bt, Tt, nt, dt),

Bt ∈ {−1, 0, 1, . . . , 9}25×25×5,

Tt ∈ {0, 1, . . . , 20}25×25×5,

nt ∈ {0, 1, . . . , 9},
dt ∈ {0, 1, 2}10

Action Space. The total action space includes all
possible placements of any tile on the board, with two-
dimensional position (x, y), level z, and orientation θ
where 0,1,2,3 represent 0, π2 , π,

3π
2 .

A = {(x, y, z, θ) |x, y ∈ {0, 1, . . . , 24},
z ∈ {0, 1, . . . , 4},
θ ∈ {0, 1, 2, 3}}

Rewards. Rewards are deterministic and incurred
immediately after tile placement such that r(s, a) =
snaz(number multiplied by layer). The goal is to maxi-
mize the number of points scored in 20 moves.

State Transitions. The only stochasticity in the game is
the order in which the number tiles are pulled. Therefore,
the state transitions are deterministic in the component
Bt, and stochastically independent from the action taken
in nt and dt:

E[nt+1] =
dtnt∑9
i=0 dti

dt+1 =

{
dti − 1 for i = nt+1

dti otherwise

4 Game implementation

We used the Pygame library to create a graphical imple-
mentation of the board, which aims to visualize machine
moves and record trajectories that will later be utilized in
our algorithms. The user interface features a trajectory
tracker that saves states S, actions A, and an estimated
value v(s). These trajectories are stored and used by our
proposed methods. Additionally, the user interface can
simulate random actions and load a trajectory to identify
patterns that could aid in visualizing and empirically refin-
ing procedures for better results. In Figure 3, we illustrate
one of the trajectories generated using this module.

5 Method

Games such as such as chess, Go, and NMBR 9 present
problems with very large state spaces that are difficult

to optimize manually. These problems are effectively
learned by algorithms consisting of MCTS and deep learn-
ing. We first present the usage of MCTS with a node
similarity mechanism. After which, we present safety
actor-critic MCTS(SAM).

Monte-Carlo Tree Search (MCTS) Algorithm.
MCTS is a tree based sampling algorithm where nodes
represent states. The MCTS algorithm has four major
steps: 1. Selection 2.Expansion. 3. Simulation and 4.
Backpropagation. MCTS commonly employs a neural net-
work f to guide its simulations (Sutton and Barto, 2018).
It stores P (s, a), N(s, a) and Q(s, a) for each edge (s, a)
in a tree. Starting from the root, the algorithm selects
moves that maximize the expression Q(s, a) + U(s, a),
where U(s, a) ∝ P (s, a)/(1 + N(s, a)). This process
continues until a leaf node is reached. Once at the leaf
node, the position s is expanded and evaluated using f(s).
The output of MCTS consists of moving probabilities that
are proportional to N(sa)

1
τ , where τ is a temperature

parameter. MCTS utilizes self-play to train the neural
network f through gradient descent.

Heuristic Local Node/Action Similarity. The first
MCTS method we explore exploits the structure of
NMBR 9 to iteratively estimate action values starting
with actions at the end of the game. This approach is mo-
tivated by two key observations. Firstly, the action values
become more certain as turns progress and the number
of unique tiles left in the deck decreases. The accumu-
lation of rewards throughout the game means that it is
always best to be greedy on the final turn, as this is the
last opportunity to get rewards. The transition from the
second-to-last (19th) turn to the final turn is deterministic
(since there is only one card left in the deck), so the action
value can be calculated exactly. The transition from the
18th turn to the 19th turn is stochastic, but at most has
only two possible next tiles to draw, and the degree of
this stochasticity progressively increases for each layer up
the tree. The second key observation is that objectively
more strategic placement in early turns (building up a
good base) are predicated on taking good actions later in
the game (scoring high tiles on that base). Thus, until
the player learns to take good actions later in the game,
the empirical action values of early actions are not very
meaningful.

Together, these two observations suggest an advantage
to training the NMBR 9 Monte-Carlo tree search exten-
sively on nodes at the bottom of the tree and progressively
propagating this learning up the tree. To accomplish this,
we developed a custom heuristic for estimating any given
valid action value from a local abstraction of the board
space around the tile to be placed, per Figure 2. A local
x × y × 5 section of the board matrix Bt is translated
into a simplified x× y matrix, where (x, y) = (7, 8) for
θ = 0 or 2 and (x, y) = (8, 7) for θ = 1 or 3. In the L
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matrix, only the current highest level of a spot on the grid
is recorded. The goal of this simplification is to greatly
reduces the number of possible iterations of the local level
space L, increasing the sample size of the number of times
an action matching L is taken, and thus improving the
trustworthiness of the empirical action value associated
with L.

Figure 2: Example of local abstracted state space L for the
placement of a 7 tile with z = 1 and θ = 1.

Let L∗ indicate the local level space of an action placing
tile n with level z and rotation θ. Then, for any pre-trained
local level space L obtained from placing the same tile
with the same z and θ, we can calculate a similarity score
as follows:

similiarity score =

0.5
∑

{i,j}∈G1

γij
12

+ 0.4
∑

{i,j}∈G2

γij
18

+ 0.1
∑

{i,j}∈G3

γij
26

γij =


1 Lij = L∗

ij

0.5 Lij ̸= L∗
ij , Lij , L

∗
ij > −1

0 otherwise

The similarity score ranges from 0-1 and equals 1 if
L and L∗ are identical. Grid spaces closest to the placed
piece are weighed most heavily, and matching the spe-
cific level of placement is rewarded more than having the
space occupied, but at a different level. If a grid space is
occupied (at any level) in one L but is not occupied at all
in the other, nothing is added to the similarity score.

Using the similarity score heuristic, we develop an
iterative MCTS training process in which simulation/roll-
out policies differ between game turns/tree layers. We
utilize three different policies for action selection at a
given node:

• Upper Confidence Bound (UCB) uses a variation
of UCB to select actions rather than children nodes
due to transition stochasticity.

At = argmax
a

(Qt(a) + C

√
ln t

Nt(a)
)

where t is the total number of visits the node, Nt(a)
is the number of times action a has been taken, and
Qt(a) is the empirical action value.

• ϵ-Greedy with Empirical Action Value (empQ)
utilizes a straight-forward ϵ-greedy policy where the
empirical action values Qt(a) are initialized to be
equal to the immediate reward of the action and are
updated during MCTS back-propagation.

• Local Action Level Similarity (LALS) is an ϵ-
greedy policy which utilizes the empirical Q values
of the local level spaces, L, instead of Qt(a). At the
current node, every valid action is converted to its
corresponding local level space L∗, matched with
the stored L with the highest similarity score, and an
action is chosen ϵ-greedily from the stored empirical
action value for the matched L.

Figure 3 illustrates the iterative training process imple-
mented. We begin by applying the UCB action-selection
policy on the target node at the top of the tree, and empQ
for the empirical action value at all other tree layers. The
ϵ value at the 20th layer is set to 1, and varies between
0.4 and 0.8 for all other layers.

Figure 3: Your caption

We then simulate a batch of games via the set simula-
tion policies starting from an early turn target node (which
can be the root node, but can also be within the first few
turns). During these simulations, the Qt(a) values are
updating online. Then, we run a much larger number of
simulations with the UCB policy from a set of late turn
nodes with high final scores. We then add to the stored set
of local level state action values by averaging the action
value across all instances of each L appearing from the
previous batch. Between training batches we update the
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tree policies to include more LALS further up the tree
and more UCB further down the tree, replacing the initial
empQ policy.

Safety Actor-critic MCTS (SAM) SAM is a modi-
fied version of the actor-critic algorithm. It incorporates
a penalization term Qc(s, a) for invalid actions and a
demonstrator that adds Qd(St+1) based on the next state
generated by the action At. The first term penalizes in-
valid actions, while the second term guides the actor-critic
toward trajectories that yield better results.

We implemented several variations of the actor-critic
algorithm: a vanilla actor-critic using a linear network,
another using convolutional neural networks, a safety
critic that incorporates only Qc(s, a), and finally, SAM,
which includes the term Qd(St+1). Previous proposals for
large state spaces with small action spaces have utilized
demonstrators (Liu et al., 2021) or guided the process with
MCTS (Lu et al., 2021) to help the algorithm escape local
minima. Demonstrator approaches have been effective
in training policy and value networks based on expert
moves before testing; however, we did not have access to
such data because the game had not been implemented
previously. Therefore, we found it appropriate to use
MCTS as a guiding mechanism for the actor-critic.

Additionally, our problem includes constraints on pos-
sible actions, represented as g(vt, at) = At+1. This com-
plexity cannot be addressed simply by modeling the net-
work to follow specific guidelines and making invalid
policy estimations. For this reason, we opted for a safety-
critic approach that penalizes invalid actions, resulting in
lower rewards.

Our actor-critic method is based on the TD(0) actor-
critic principle. We have a policy with a baseline such
that the policy gradient theorem can be described as:

∇J(θ) ∝
∑
s

µ(s)
∑
a

∇π(a|s, θ)(qπ(s, a)− v(s))

Next, we calculate a one-step update for the weights of
the policy estimation function:

θt+1 = θt + α(Gt:t+1 − v̂(St,w))
∇π(At|St, θt)

π(At|St, θt)

Substituting in the return, we have:

= θt + α (Rt+1 + γv̂(St+1,w)− v̂(St,w))

×∇π(At|St, θt)

π(At|St, θt)
(1)

This simplifies to:

= θt + αδt
∇π(At|St, θt)

π(At|St, θt)

The estimation of the value function is given by:

w = w + αwδt∇v̂(S,w)

The environment generates rewards based on a reward
function r(s, a). We argue that the reward obtained for
choosing an invalid action a1 should be nullified. The
algorithm must learn not only a policy but also which
actions are invalid. The standard approach is to set the
factor Qc(s, a1) = 0, indicating that a1 violates the con-
straint, and Qc(s, a) = 1 for valid actions, incentivizing
the model to select them (Ma et al., 2021). Therefore, we
have:

r′(s, a) = Qc(s, a)r(s, a)

This ensures that the reward generated by invalid ac-
tions is nullified.

From equation (1), we can implement the safety factor:

δt = (Rt+1 ·Qc(St, At) + γv̂(St+1,w)− v̂(St,w))

θt+1 = θt + αδt
∇π(At|St, θt)

π(At|St, θt)

In principle, this factor decreases the probability of
taking an invalid action aπ.

We enhance the safety critic by incorporating a reward
factor QD(S

[d]
t+1) to guide the actor-critic. Given a trajec-

tory d = {(s0, a0), (s1, a1), . . . , (s19, a19)}, where S
[d]
t+1

represents the state at timestep t + 1 along trajectory d,
QD(S

[d]
t+1) provides additional reward. This reward is

calculated as QD(S
[d]
t+1) = 23ϕ, where ϕ is the cosine

similarity between the matrix representations of S[d]
t+1 and

the current state St+1:

ϕ =
S
[d]
t+1 · St+1

||S[d]
t+1|| · ||St+1||

The constant 23 represents the product of the mean
individual value and the mean level (details omitted for
brevity). This reward modifies the advantage function
during training:

δt = Rt+1 +QD(S
[d]
t+1) + γv̂(St+1,w)− v̂(St,w)

Note the Qc(St, At) term is generally considered part
of Rt+1 in advantage actor-critic formulations. Trajec-
tories d can be generated from expert human play or
high-scoring MCTS runs. The reward is conditional on
action validity:

QD(S
[d]
t+1) =

{
23ϕ, if At is valid
−45, if At is invalid

We employed a factor of −45, as it represents the neg-
ative of the maximum achievable score at any given step.
Our empirical results demonstrate that this term is effec-
tive. A detailed description of the full algorithm can be
found in Apendix B.
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6 Results

Results for the Node-Action similarity MCTS had a very
high variation throughout training and did not improve sig-
nificantly over time (Figure 6). While some games were
able to achieve very high scores, the average remained
below 20. Given that an amateur player can typically
score 50-70 points per game, these results demonstrate
significant challenges with the learning. There are many
reasons for this. Firstly, the computational power required
for this algorithm, despite all of the design choices to
reduce computational burden, remains too high to im-
plement effectively without millions of simulations per
action. We were only able to train up to three batches,
implementing LALS up to the 16th layer. Furthermore,
the hyperparameters (i.e. C for UCB and ϵ) used for the
training may have been suboptimal, so more work would
need to be done to fine-tune these parameters.

For the SAM algorithm, although we generated trajec-
tories, their quantity and quality were insufficient. We
achieved satisfactory results by setting QD = 20 to fixed
values when the action was valid.

The implementation involved testing the actor-critic
across multiple scenarios to evaluate its ability to gener-
alize and learn from state descriptions. We discovered
that, given a specific state, the algorithm could estimate
a policy that consistently produces better average results
(as demonstrated in Figure 4). Furthermore, we made
significant progress in learning up to the first seven valid
states without explicitly providing that information to the
actor-critic. By simply modifying the reward function,
we observed substantial improvements within just 500
episodes (Figure 5).

Figure 4: Results for SAM without penalization factors

However, we identified a limitation regarding the algo-
rithm’s ability to reach a more optimal state. This limita-
tion is due to the large size of the action space. We can
conclude that the action space is significantly smaller than
the state space, i.e., A << S. That is why we couldn’t
achieve better results, but we believe the demonstrator
trajectories will help the algorithm improve.

Figure 5: Results for SAM with constrain and trajectory factors

7 Conclusion

In this paper, we showed the Monte Carlo Tree Search
method applied to the board game NMBR 9. In partic-
ular, we were successfully able to implement two vari-
ations of the MCTS method. The first method utilized
node similarity and the second method used a modified
actor-critic algorithm. In the future, we would like to
implement a MCTS by using a convolutional neural net-
work to function has a value state estimator. Due to time
and computational constraints we were unable to finish
training and integrating the convolutional neural network.
This method would be more in line with AlphaGo and
AlphaZero.
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Figure 6

Figure 7: Value Network Architecture

undergo layer normalization, and feature a linear output
layer.

Figure 8: Policy Network Architecture
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B SAM Algorithm

Algorithm 1 Safety Actor-critic MCTS (SAM)

Require: Actor network π(s|θ), critic network v(s|w),
demonstration trajectories D, learning rate α, dis-
count factor γ

1: Initialize Network parameters θ,w
2: for each episode do
3: Initialize state S0

4: for t = 0 to T − 1 do
5: Sample action At ∼ π(St|θ)
6: Execute At, observe reward Rt+1 and next

state St+1

7: Sample demonstration trajectory d ∼ D

8: Calculate cosine similarity ϕ =
S
[d]
t+1·St+1

||S[d]
t+1||·||St+1||

9: Calculate safety reward:
10: if At is valid then
11: QD(S

[d]
t+1) = 23ϕ

12: else
13: QD(S

[d]
t+1) = −45

14: end if
15: Calculate TD error: δt = Rt+1 +

γv(St+1|w)− v(St|w) +QD(S
[d]
t+1)

16: Update critic: w← w + αδt∇wv(St|w)
17: Update actor: θ ← θ+α∇θ log π(At|St, θ)δt
18: St ← St+1

19: end for
20: end for
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